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Abstract Structural phase transitions are considered in which the effective ordering interaction 
J ( Q j )  arises from local stresses induced by the ordering in cell i and propagated elastically to 
a distant cell j .  The generalized Landau free energy functional is set up and four applications 
made. Firstly the origin of metastable tweed microstructures is shown to lie in the dense medium 
of strong embryonic tweed-lie microdomaiN existing as fluctuations at temperatures as high as 
ZT, and above. Secondly the tweed-like panem originates from (he very anisovopic interaction 
associated with domain walls. and four cases are distinguished. Thiidly it is shown that the 
Landau-Ginrburg theory of the width and shape of a domain wall can he carried over in some 
cases but not others. Fourthly the magnitude of critical Ructuations is considered together with 
corresponding corrections to the Landau theory of the phase Uansition in the four cases. 

1. Introduction 

The purpose of this paper is to discuss various thermodynamic effects and their implications 
in systems where the cooperative ordering behaviour is mediated by coupling strain, as in 
ferroelastic and co-elastic crystals. 

Many materials of interest, including perovskites and silicate minerals, show typical 
structural instabilities generated by strain. The origin of such strain is not always the 
traditional softening of an acoustic branch, but may be related to some intracell ordering 
as in many oxide ceramics, high-T, superconductors, relaxors. etc. The metastable textures 
often formed in these materials during (dis)ordering have characteristic length scales much 
larger than a lattice spacing, clearly showing an involvement of long-range elastic forces. 

In discussing the origin of the local ordering processes, we have in mind, for example, 
materials containing rather rigid units such as BX;-, NO;, or CO:- ions or a CsHs phenyl 
group, or in other cases the linking of Si04 tetrahedra (also rather rigid) in framework silicate 
structures or octahedra in perovskites. This packing and linking of such rigid units results 
in an ordering interaction J(Rj) in the material [ I 4  When atomic ordering takes place in 
one cell of the lattice or when one unit rotates at position Ri, it inevitably pulls or pushes 
neighbouring atoms or/and units, i.e. it creates a local displacement field. This field then 
displaces atoms beyond it and hence it propagates elastically to distant parts R, o f  the crystal 
via a knock-on effect. That distant displacement pattern will act as an effective force field 
tending to order the crystal around Rj. We therefore have an ordering interaction J(Rij) 
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mediated by strain. For example in figure 1 we show very schematically an ordering of two 
large and two small atoms on four sites in one unit cell at R. which will tend to produce 
a rhombohedral distortion of the cell. When propagated elastically to the cell at Ri, that 
change in cell shape will induce a corresponding ordering of atoms on the four sites there, 
thus giving the interaction J(Ri,). We shall call this a strain-mediated interaction. The 
situation is closely analogous to the Coulomb interaction, with the elastic strain fields here 
replacing the electrostatic fields, except that our local originating displacement pattern arises 
from a multipole of vector forces, which is usually more complicated than the multipoles 
of scalar charges in the electrostatic case. Further we shall confine ourselves to systems 
where the ferroelastic behaviour is negligible in comparison with the elastic effect, i.e. the 
dipole-dipole interaction is unimportant. 

A M Bratkovsky er a1 

R .  
I 

Figure 1. An ordering process in cell i on the left (pictured here as the orderkg of large and 
small Jloms on four sites) tends to distort the unit cell and to create a local stress field, denotcd 
by four arrows acting on the surroundings. The stress is propagated to distant cells j on the 
right where a distortion of the cell acts as a force field, tending to ordcr the atoms there. 

In a previous paper [l] we have developed the theory of strain-mediated interactions in 
order to understand various phenomena mentioned briefly below. The crux of the matter 
lies in the relatively long range of elastic forces and their strong anisotropy. We obtain, 
broadly speaking: 

(i) in the ferroelastic (F) case 

(ii) in the antiferroelastic (AF) case 

Here Y,, represents some appropriate spherical harmonic of order I and the angular 
term in (1.1) is the strongest one, but of course averages to zero over any shell of radius R. 



Strain-mediated structural phnse transitions 3681 

The most anomalous part of (1.1) is the term - ( Z / N ) ,  which is constant, i.e. has infinite 
range. It is of order U N  as would be suggested by normalization, where N is the number of 
crystal ceUs in the specimen. It is a Zener-Eshelby type of force IS, 61 and is related to the 
macroscopic change of shape of a domain on undergoing the phase transition. Although the 
Zener-Eshelby term is of order I N ,  it gives a finite contribution to Tc and to the enthalpy 
per mole of the phase transition, when summed over all cells. It is also responsible for 
some of the phenomena to be mentioned below. We shall hereafter refer to it as the Zener 
or 'volume' term or interaction, to denote that it extends with infinite range throughout the 
volume of the material. In fact it depends on k&, Ri and the shape of the boundary and is 
sometimes called an image force by analogy to electrostatics, but it has a unique non-zero 
average value denoted by - Z / N ,  which our theory derived [l]. There is also a second 
interesting feature of our results. In the ferroelastic case the interaction in Fourier transform 
J k  has a singularity at k = 0 in that the limit of Jk -+ 0 depends on the direction of k. This 
is related to the fact that velocity of sound is anisotropic. It has observable consequences in 
the form of the fluctuations of the order parameter above Tc and the suppression of critical 
fluctuations. The points of mathematical difficulty in the theory we shall have to watch 
arise from these two features, i.e. the volume term in (1.1) and the elastic anisotropy, both 
contributing a singularity at k = 0. 

Incidentally, the strain-mediated interaction does produce a genuine phase msi t ion  
without the addition of any Coutomb or nearest-neighbour interaction. In fact the behaviour 
of the order parameter Q(T) follows rather well that derived from the Bragg-Williams 
(mean-field) theory, as might be expected from the infinite range of the JZ part of J(Ri,) 
(1.1). Thii is shown in figure 2, which was obtained from a computer simulation on a 
model of the type shown in figure 1, as described in more detail in [9]. 

Q O  I t 
0.06 

0.0 
0 0.02 0.04 

temperature 
Figure 2 TIe order parameter Q as a function of tempmure T in a computer simulation 
of a system with interaction J(R+) in lhe m e r  of figure 1 (heavy line), It has lhe normal 
form of a sbuctural phase transition and in fact follows mean-field lheory (Bragg-Wtlliams 
approximation, light line). 
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While the previous work focused on the interaction J [l], the purpose of the present 
paper is to add the entropic terms to J(R) or Jk so as to develop in section 2 a Landau- 
Ginzburg type of free energy functional GLG. This can then be used to give a theory of 
various thermodynamic effects associated with the ordering phase transition, some of which 
will be discussed here and others only mentioned briefly. In particular we will consider 
in section 3 the strong fluctuations above T, that result in the tweed texture on cooling 
through T,. In section 4 we will treat the shape of domain boundaries and how far the 
traditional Landau-Ginzburg theory can be taken over. In section 5 we will analyse the 
critical fluctuations near Tc and the existence and magnitude of any Ginzburg interval ATG 
of non-classical fluchlations around T,. The other main consequence of a strain-mediated 
interaction is its effect on the kinetics of (dis)ordering. Especially in the ferroelastic case 
(l.l), the infinite range of the Zener term means each cell ‘knows what every other cell is 
doing’, so that ordering proceeds in a rather uniform manner over a rather large domain 
instead of the traditionally discussed nucleation and growth mechanism [3,4]. As a result 
of the rather homogeneous (dis)ordering one can develop a rate theory for the process, even 
far from equilibrium [7-91. 

In [ I ]  we have shown, however, that the interaction (1.1) results in a highly non-local 
form of the internal energy of a strain-coupled system 

This cannot be expressed in local form because the summation (1.3) becomes an integral, 
which is only marginally convergent with the interaction (1.1). so the energy of a domain 
or an ordering embryo above T, is strongly shape dependent. Note that the first term in 
(1.1) diverges logarithmically when integrated over a cone, although it adds up to zero 
when averaged over all directions. This consideration incidentally gives an insight into the 
existence of very strong embryonic ‘tweed’-like fluctuations above Tc and the development 
of a tweed texture when quenched below T. In any case the development of a Landau- 
Ginzburg free energy functional in section 2 i s  not as straightfoward as in the conventional 
theory with short-ranged interactions [9].  

2. Formulation of the Landau free energy 

We have already given in section 1 the bare essentials of our model. We have a local order 
parameter Q(Ri) in the cell centred at Rj, and the local strain field around Rj due to the 
ordering process results via elastic propagation in the interaction J(Ri -Rj) between cells, 
the energy E being given by (1.3) 111. Our first task is to write down the corresponding 
Landau free energy Gm and the second to summarize its characteristics. 

To obtain GLG we need only add the entropy term to the energy (1.3) in the usual 
manner of the Bragg-Williams theory of phase transition [IO, 111: 

(2.1) 

Here we have taken the entropy of an king spin in each cell in terms of the usual 
&[I f Q(Ri)]ln i [ l  f e(&)] and expanded about the disordered state. If we have some 
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displacive variable in a double-well potential instead of an atomic ordering in each cell 
describable by an king spin, then the form of Gu; remains the same but the numerical 
coefficients in the entropy term are altered. 

It is more convenient to work with Q k ,  Jk, the Fourier transforms of Q(Ri), J(R,j), 
in terms of which the energy and the free energy become 

where the higher-order terms are the same as in (2.1) and (2.2). 
The special features due to a strain-mediated interaction all stem from the behaviour of 

Jk, which was developed in detail in [I]  and which we now summarize. In [l] we started 
with the simplest model of strain coupling, namely with e(&) coupled linearly by a set 
of forces F(R - Ri) to the displacements u(R) of nearby atoms at R: 

Here the first term is the usual energy of harmonic distortion of a lattice (phononic 
contribution), and the second represents a bilinear coupling. The indirect coupling via the 
strain fields can be calculated explicitly. Here we are only interested in the long-wavelength 
behaviour, which has a form largely determined by symmetry. For ferroelastic transitions, 
to which we shall confine ourselves from now on, unless explicitly states, Jk is given by 

(2.50) 

In (2.5) Cm6,, are the elastic constants of a crystal; s2, is the volume of a unit cell; e:p is 
the microscopic strain tensor defined by the equations 

C,Bvie;, = (2.5b) 

( 2 . 5 ~ )  

The lattice Fourier transforms of the forces F and the inverse matrix of the force constant 
9-' define F k  and the lattice Green function GI, entering the expression ( 2 5 ) .  

The specific features due to strain-mediated coupling are described in detail in [l]. Jk 
has two types of singularity at IC = 0. Firstly, the long-range nature of J(R) results in a 
very peculiar long-wavelength behaviour of Jk 

Jk = d ( n )  - g(n)k' (2.6) 

where n = k/k is a directional unit vector. Thus d ( n ) ,  the limit Jk+o, is anisompic and 
depends strongly on the direction n in which the limit is approached. It stems from the fact 
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that the lattice Fourier transform of the spin-lattice forces, Ft, and the lattice Green function, 
G f ,  entering expression (2%) for Jk have the following long-wavelength behaviour: 

A M Bratkovsky et a1 

where Lfi is given by (25c) and &g(n) can be expressed through elastic constants. Thus, 
the dependence of Jk on the modulus of momentum disappears in zeroth order resulting in 
the behaviour (2.6). 

Secondly. there is a delta-function at k = 0 from the Zener-Eshelby term Jz  in (1.1). 
Thus, in general, J ~ = o  is different from the limit k -+ 0 along any direction (figure 3) and 
we have the fundamental property 

J- 2 d(n) for any n. (2.7) 

However, in some cases Jb=o is equal to d(n) for certain symmetry directions, and these 
are the ‘soft’ directions where f” (2.3) the fluctuations have a low free energy, i.e. their 
amplitude is enhanced. As usual, the mean-field expression for the critical temperature for 
ferroelastic systems is given by the value Jk at k = 0 

It is very important to note that the right-hand side of (2.1) cannot be represented in a local 
form, as can be seen in terms of real space fiom the long-range behaviour (1.1) of J ( R i j ) .  
This results in there being a strong shape dependence of the energy of the domains in a 
textured ferroelastic system, as discussed following (1.3). 

100 110 0 
Figure 3. The most general form of the inleeraction Jk in recipmcal spa=. The value J . d  is 
Iwger than the limit k + 0 in any direction. 

In order to discuss the form of Jk funher, it is necessary to be more specific. It 
was shown in [ 11 that one must distinguish three fenoelastic cases. For antiferro-coupling 
there is a weaker singularity around k = 0 which io any case is rather irrelevant because 
ordering takes place around some point k% on the Brillouin zone boundary where Jk is 
an analytic function of k: the situation is completely analogous to that in the nearest- 
neighbour Ising model and the conventional Landau description of the phase transition. 
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Figure 4. Domain boundaries for fmcelastic transitions with the e, type of shear: (a) a single 
boundmy; (b) a periodic array with wave vector k in the (100) direction. 

Antiferroelastic coupling occurs when local order e(&) sets up a surrounding stress field 
that has a different symmetry from that of any macroscopic strain. 

Among ferroelastic couplings, one must distinguish three cases as shown in [l]. The 
most general case is that of figure 3 where Jk=o is larger than the limit d ( n )  in all directions 
n: this case is exemplified by a coupling of the Q(Ri) to a volume strain of the cell or 
a tetragonal 2zz-xx-yy type of strain which we shall refer to as cases F(vol) and F ( 2 z z -  
x x - y y )  respectively. Note that we are only considering a scalar order parameter e(&): 
the theory can be extended to multicomponent order parameters as discussed in [I]. When 
the coupling of e(&) to the lattice has the symmetry of a strain, domains with order 
parameter +1 and -1 show opposite macroscopic strains as in figure 4 and a macroscopic 
domain boundary between them has to satisfy certain geometrical conditions [13] for the 
lattice planes on the two sides to join up coherently. In the general case this is not possible 
for any direction, but with a strain of non-zero cly (our F ( x y )  case) such boundaries are 
possible perpendicular to the (100) and (010) directions (figure 4). Indeed one can form 
whole arrays of such boundaries (figure 4(b)) without any special strain of the cells on 
the boundaries, i.e. with zero energy cost, and the same is true of analogous sinusoidal 
modulations of the order parameter. Thus in the F ( x y )  case Jk is constant along two 
‘ridges’ with k along the soft (100) and (010) directions, and is equal there to the value 
J ~ J )  governing Tc (figure 5) .  Finally our F(xx-yy)  case with x x - y y  strain coupling 
illustrates the situation where the geometrical compatibility relations [ 131 do allow coherent 
boundaries, in this case perpendicular to the (fl, 1, 0) directions, but they involve extra 
distortions of the cells in and near the boundaries. In this case d ( n )  along these ridge 
directions is again equal to J k d  but the g(n) in (2.6) is non-zero (figure 6). 

The profile of Jk in ferroelastic cases therefore consist of ‘ridges’ along ‘soft’ directions 
and ‘valleys’ along ‘hard’ directions. If and only if Sapriel’s compatibility relations are 
satisfied, Jk along the ridge comes in to J u .  i.e. we have 

exemplified by our F ( x x - y y )  case. The F ( x y )  case is very degenerate with g(n) = 0 
along the ‘ridge’ directions. Jk in figures 5 and 6 was calculated with the model of L1-31 
in which local order in the cell at R, produces unit forces F in appropriate directions at 
the eight corners of the cell (figure 1). The elastic medium represented by the dynamical 
force matrix in (2.4) consists of a simple cubic lattice where nearest and next-nearest 
neighbours are connected by springs with force constants K I  and Kz respectively. 
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3------ ----- 

Figure 5. The interaction Jk in lhe k,, k, plane for the ferroelastic model of figure 4 

Figure 6. The interaction Jk in the kr. k, plane for Ule fermelastic model F(xx-yy)  wilh the 
elr-eyy lype of strain. 

3. Application to tweed embryos 

'heed texture appears as a metastable structure on cooling a material through the transition 
temperature T,, with many fine lamellae domains lying in two perpendicular planes. Since 
it appears below Tc, it is normaUy thought of purely as a product of the ordering kinetics. 
This is incorrect. Certainly the development of the tweed with time is determined by the 
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kinetics, but its origin lies in the tweed embryos, which are already very strongly present 
as normal thermal fluctuations in the material at all temperatures well above Tc. Figure 7 
shows the result of a computer simulation (detailed below) at T % 2Tc frozen at one instant 
of time. We see that the material is a dense medium of tweed embryos everywhere, not 
just a few nuclei here and there. The same has been found in other similar simulations. 
Naturally the embryos are even stronger at T near T,, and then on cooling below T, the 
metastable tweed structure simply starts as a freezing in of the embryos present above T,. 
Subsequently the domains sharpen up and coarsen in time, as described elsewhere [14,15]. 

Figure 7. A snapshot of the Huctuations at high temperature T = 1.7T, in a computer simulatinn 
nf the model of figure 6, showing the value of the srrain onler parameter Q(R) in one layer of 
64 x 64 cells of the simulation sample. Note the strongly developed tweed-like mimodomaim 

The present paper is concerned with fluctuations, and the purpose of this section is 
to show quantitatively that the dense medium of embryos above T, as in figure 7 can be 
explained more or less completely in terms of the classical theory of fluctuations based on 
the free energy developed in section 2. The first point is that it is unusual to have such 
strong fluctuations of the order parameter so far above T,: note that the order parameter 
Q(R) is near i0.5 inside some microdomains (figure 7). The difference from e.g. a nearest- 
neighbour king model lies in the form of &, being large along ridges in k space (section 2). 
The second point is to explain the geometly of the embryos, i.e. the extreme anisotropy of 
the microdomains. There are, roughly speaking, two length scales in figure 7, the width 
of the microdomains and their length, and it is the difference between these that gives the 
characteristic tweed effect. 

Our model, both for theoretical analysis and for computer simulation, follows that 
described in [14]. We consider a simple cubic array of cells (lattice constant a )  with 
‘atoms’ at the corners connected by springs of strength K1 and KZ to first and second 
neighbours, Inside each cell i is an king pseudospin Qj = i1 to represent the ordering 
inside that cell, whatever it may be. When Qi = + I  a set of forces F ( R  - Ri) act at 



3688 

the eight comers of the cube i to represent the local stresses on the surrounding material 
set up by the ordering in cell i ,  and of course forces - F ( R  - Ri) when Qj = -1. The 
‘atoms’ at the corners of the cell can suffer displacements u(R) and hence propagate the 
effect of Qi through the material to distant cells at R,. causing an effective strain-mediated 
interaction J ( R , , )  or Jk in Fourier transform. The model is a discrete version of that 
used by Parlinski et a! [14,15] and various tests showed that the differences between the 
results of computer simulations are minor. The complete theory of Jk is given in [l] and 
the results in figures 5 and 6 were calculated for sets of forces having the symmetry of 
exx-eyy and exy shears respectively and producing such shears on ordering. We refer to 
them as our F ( x x - y y )  and F ( x y )  cases where F denotes that they result in ferroelastic 
transitions. The computer simulations were canied out on samples mostly of 64 x 64 x 7 
cells with free boundary conditions. Increasing the sample size did not alter the results. The 
system was equilibrated using the Glauber dynamics for the pseudospins Qj. After each 
new configuration the ‘atoms’ were relaxed to their new (static) equilibrium positions using 
Newtonian dynamics, with a strong frictional force to speed equilibration. It was shown 
in [1-4] that with our harmonic springs the thermal agitation of the ‘atoms’ about these 
equilibrium positions is completely decoupled from the interaction 3 and hence is written 
out of the computer code. The simulations were implemented on the DAP AMT computer 
in Cambridge. J k  was calculated as the interaction between the e(&) as defined. 

To give a theory of the embryonic domains above Tc and their dimensions we now 
follow the conventional theory of fluctuations. Each Q k  is considered as an independent 
Gaussian fluctuation, resulting in a free energy of &T. We then obtain from the Landau 
free energy (2.3) the correlation function 

A M Bratkovsky et a1 

(3.1) 

where (. . .) denotes the thermodynamic average. From (3.1) & has a butterfly shape similar 
to Jb with four ridges in the (&l, i l ,  0) directions for the F ( x x - y y )  case, as observed in 
simulations. It reflects the extreme anisotropy of Jk at low k discussed in section 2 with its 
ridges along the (&I,  51, 0) directions, which in turn reflects the ease of forming domain 
walls perpendicular to these directions (see section 2 and [l], [31 and [41). 

A quantitative comparison of (3.1) along a ridge with & from a simulation of 1.7Tc 
is shown in figure 8. The Sk from simulations (figure 8(a)) is notoriously noisy 1161 but 
with that reservation the agreement with (3.1) (figure 8(b)) is satisfactory and confirms our 
whole argument about the bulk of tweed embryos above T, being normal thermodynamic 
fluctuations (figure 8). The strength of the fluctuations can be gauged from the fact that the 
local strain in the microdomains is typically 0.5eo where eo is the spontaneous strain (2.56) 
of the perfectly transformed material at 0 K. At 1.3Tc the data were noisy. We also now 
see deviations from (3.1), in particular the reduction in & below (3.1) at low k along the 
ridge (figure 8(a)). This was found in several independent runs and we believe is not noise: 
it may be due to finite sample size and/or saturation effects [16]. The possible importance 
of saturation effects can be understood qualitatively by noting that the local spontaneous 
strain is even larger than that at 1.3TC noted above. The saturation effect at low k was even 
stronger in the two-dimensional simulations of ParIinski et af [14,15]. 

We can analyse figures I and 8 one step further to derive the length scales. For k in 
the region of one of the four ridges, we can write approximately 

(3.2) 
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Figure 8. The correlation function Sh in reciprocal space for the tweed-like fluctuations above 
T,: (a) From the simulation in figure I ;  @) from the simple theory of (3.1). 

where k, and kp are respectively the components of k along the crest of the ridge and 
perpendicular to it. On substituting (3.2) into (3.1) and Fourier transforming into the 
correlation function S(R) in real space, we can interpret 21 as the width of a microdomain 
and obtain from figure 8 a value of order 1.5 lattice spacings in a typical run at 1.7Tc. 
Similarly the (narrower) width of the ridge gives the (longer) length of the domains. An 
analysis of the theory of Jk [ 11 shows that xz(kf) is not a constant along the ridge if one 
makes a fit of the form (3.2), but varies with k, as already indicated in (3.2). There is 
therefore no unique length scale for the length of the microdomains but we may take a 
typical value of k, = 0.25/a along the main part of the ridge and obtain a length of order 
.$z N 7 a  again in agreement with figure 7 .  Note there is no new physics in going from Sk 
to the real-space picture of figure 7: it is largely a matter of Fourier transformation, and our 
analysis via (3.2) is a useful check in view of the somewhat complicated form of figures 7 
and 8. Moreover from (3 .1)  and (3.2) we expect .$I - IT - TcI-l’z, which fits roughly to a 
comparison of simulations at 1.7Tc and 1.3TC. 

We conclude that the width of the embyronic microdomains is determined by the 
curvature of Jk along the crest of the ridge, and the length of the domains, less well defined 
in figure 7 ,  is determined by the width of the ridge in some general sense. This picture is 
confirmed by two further simulations. Figure 9 shows order parameter fluctuations under the 
same conditions as in figure 7 but now for the F(xy)  model. Recall from section 2 that Jk is 
flat along the crest of the ridge in this case because it costs zero energy to form any number 
of domain walls (figure 4). Thus .$I in (3.2) becomes zero and with width of the domains has 
indeed shrunk to one or two lattice spacings in figure 9. On the other hand in the F(tetrag) 
case with tetragonal strains of symmetry 2zz-xx-yy, no macroscopically coherent domain 
walls are possible by Sapriel’s compatibility relations: we are only considering the situation 
of domains with positive and negative strains, not that of a multicomponent order parameter 
with tetragonal shears around the x ,  y and z axes. The conditions for coherent macroscopic 
domain walls between regions of strain e(’) and e(’) are 
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Figure 9. The tweed-like fluctuations under similar conditions to figure 7 for the femlsstic 
model of figure 4 with er? srrains. with the width of the micmdomains only one or two lanice 
spacings. 

det(eti - e$) = 0 

and 

Tr (e$? - e$) = 0 (3.3) 

where in our case e(’) = -e(’). It is easy to verify that 2zz-xx-yy shear does not satisfy 
(3.3). This fact is reflected in the behaviour of Jb, which does not reach the value Jk-0 
in the limit k + 0 along any direction (figure 3). Even small domain boundaries cost a 
substantial energy and are suppressed in the fluctuations as shown in figure 10. 

Retuming to the classic case of tweed in figure 7, we observe that there appears to be no 
distinction between twice the thickness of a domain wall and the width of a domain, nor is 
any expected from (3.1) and (3.2). However the situation changes on quenching the system 
rapidly to below Tc [I, 3,4]. Initially in our simulations the general pattem of microdomains 
remains that in the fluctuations above T, before the quench, but the domain walls rapidly 
sharpen up to narrower boundaries in accordance with the theory of domain walls developed 
in the next section, thus introducing a third length scale. However we should add one 
caution: dimensionally speaking there is only one length scale in our theoretical model, 
namely the cubic lattice constant. There is no other physically determined length. All other 
relevant quantities are ratios such as TIT,, the strain eo and elastic properties of the medium 
determined by KlIKz. The tweed texture might therefore involve a continuum of length 
scales, with those we have picked out being most significant. 

The above discussion has focused largely on an analysis in k-space. However one 
can obtain a physically equivalent picture from J(R) in real space. J(R) is extremely 
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Figure 1U. FlncImlions under similar conditions to figures 7 aml 9 fw the ferroelartic model 
with tetragonal shears of type 2e,,-e,,-e,. There are no twd-like micmdomains because of 
the higher energy cost in forming domain walls, due 10 not satisfying the compatibility relations 
(3.3) far coherent boundaries. 

anisotropic, with the Ydm terms in (1.1) dominating 111. For example in the F(xx-yy )  case, 
J(R) is ferroelastic in sign in the ( f l ,  f l ,  0) directions and antifemoelastic in the (fl, 
0, 0), (0, f l ,  0) directions. Moreover their long range means that they add up in one 
direction. This accounts for the shape of the thin slab domains parallel to the ( f l ,  f l ,  0) 
directions. The real-space picture also explains quantitatively why the fluctuations above 
Tc are so strong. The anisotropic part of J(R) averages to zero, so that Tc is determined 
by the rather weaker uniform part J z .  

In conclusion, therefore, the fluctuations seen as tweed embryos above T, are much 
stronger than one is normally accustomed to in  phase transitions, e.g. in a nearest-neighbour 
king model, but there is nothing mysterious about them. They can be accounted for 
quantitatively by traditional Ornstein-Zernike theory until close to Tc it breaks down as 
the fluctuations become too strong. The picture in real space also shows why the forces 
governing the shape of fluctuations are large compared with ksT,. 

4. Application to domain boundaries 

Throughout this section we will consider planar domain boundaries of infinite extent at 
temperatures below T,. This issue is, to what extent can the traditional LandauGinzburg 
theory of the wall width and wall energy based on the free energy functional GU; be 
taken over into our more complicated situation? We start with the form (2.3) for Gu; and 
substitute the form (2.6) for Jk in the continuum limit to obtain 

GLG = Go+ E[.. - d ( n )  + g(n)k*]QrQ-k f O(Q4) (4.1) 
k 
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where IC is always in the direction n perpendicular to the boundary, and where the fourth- 
order terms are the same as in (2.1). As usual we would like to interpret ik as the gradient 
operator so that (4.1) becomes the conventional form for the free energy per unit area of 
wall: 
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But we cannot do that here in general because d(n) - g ( n ) k z  is not an analytic function 
of k. However, we can proceed with such a transformation in special cases satisfying two 
conditions: (i) that we are dealing with a physical case where J ~ = o  is the same as the 
limit k 4 0 along some direction n, and (ii) that our boundary is perpendicular to such a 
direction. We then have in (4.2) 

d(n)  = kBTc (4.3) 

and (4.2) takes the usual Landau-Ginzburg form with the usual result 

w = [g(n)/ks(Tc - T ) y 2  (4.4) 

for the wall width and a profile of form 

Q ( x )  = Qo(T)tanh(x/2’/*W) (4.5) 

where Q,(T) is the thermodynamic value of the order parameter. 

Q(x) far from the wall has the uniform value 
The important point is that the free energy functional (4.2) is formally minimized when 

1/2 e(n) = [ [ d ( n )  - ~ T ] / ~ B T ]  . (4.6) 

This is only equal to the bulk thermodynamic value 

Q o V )  = [(Tc - T ) / T ] ’ / *  (4.7) 

when the condition (4.3) holds, i.e. when the conditions (i) and (ii) above are both satisfied. 
Otherwise the material formally has a free energy density distant from the wall higher than 
the bulk thermodynamic equilibrium value. The physical reason is that with a boundary not 
satisfying the compatibility relations (3.3) there has to be a non-zero lateral strain to make 
the lattices of the two sides match parallel to the boundary as illustrated in figure 11. Of 
course that would leave the material in an unstable state of strain away from the boundary, 
so that in reality it would break up into some kind of domain texture. 

We need to add one gloss concerning the validity of our arguments. The development of 
the general theory in [l], clearly stipulated that the specimen had macroscopically a uniform 
strain, which rules out the treatment of a single domain wall as done here. However one 
can consider a regular or irregular array of parallel walls as in figure 4(b) and recover the 
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Figure 11. A domain boundary in the 'wrong' (100) direction for h e  model with .?,-e, 
shear. Coherent boundaries of low energy mn in the ( + I ,  1, 0) direction as in figure 7. The 
(100) boundary shown requires additional volume strains to match the lanice planes across the 
boundary, resulting in a substantially higher energy. 

results of the present section by considering all possible arrays and taking the limit as the 
density of walls tends to zero. In that sense (4.2) has a wider applicability for a wall of 
type (4.3) than the assumptions that went into it. However, one must not push one's luck 
we have found the theory can produce inconsistent and spurious results if one ignores the 
original condition. 

Finally we remark that in antiferroelastic systems there is no macroscopic strain, the 
compatibility relations (3.3) are irrelevant, we have d(n) = 0, and Jk is analytic around the 
point ko of the antiferroelastic phase transition. Thus a normal Landau-Ginzburg functional 
applies. The domain boundaries are irregular in shape and much more mobile. 

5. Application to critical fluctuations 

In this section we consider the build-up of critical fluctuations close to T,. We do not 
calculate critical exponents but merely assess to what extent the Landau free energy is 
self-consistent in terms of fluctuations and how large the corrections are, using the standard 
theory [17.18]. Long-range elastic forces are known to suppress critical fluctuations in 
systems with striction or having an acoustic instability. The discussion in previous sections 
shows that the physics of cooperative behaviour in ferroelastic systems with a strain-coupled 
order parameter is different, although there are some similarities to previously studied cases. 
In our cases the gap between a ferroelastic J ~ = o  and the limit of Jk as k -+ 0 in all or 
nearly all directions clearly reduces the amplitude of fluctuations as is evident from (3.1). 

We now follow the usual way of estimating Gaussian classical fluctuations to explore 
the possible classes of critical behaviour in strain-coupled systems [18, 191. The correction 
to the heat capacity from the fluctuations contains integrals such as 

where Sk is the correlation function for fluctuations. For simplicity we confine ourselves 
to the region T 2 in which case from (3.1) with the long-wavelength behaviour (2.6) of 
Jk we have an (Omstein-Zemike) approximation quadratic in k 

sk = (QkQ-k )  = bT/[ksT - d(n) f S(n)k2]. (5.2) 
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It is easy to show using (2.5) that the function d(n) entering (5.2) is extremal along some 
‘soft’ directions in ferroelastic systems. In a typical case of the F ( x x - y y )  coupling they 
are [ l ,  f l ,  01 as determined by a term proportional to (n: - n;)’, where nl and n2 are the 
directional cosines in a basal plane [l]. Choosing one axis along a ‘soft’ direction in the 
basal plane, we can rewrite the expression for Sk (5.2) in the following general form using 
polar coordinates in k-space (exact to withii some proportionality constant): 
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& c ( [ ~ / r ~ + ~ ’ + a ~ ~ o S 2 ~ + b ~ s i n ~  ~ s i n ~ ~ ‘ p + g k ~ ] - ’  (5.3) 

where r, = [T,/(T - i‘311/* is the usual correlation length proportional to W (4.4). 8 and ‘p 

are the polar and azimuthal angles, respectively, and a ,  b and g are the material constants 
expressed via elastic constants. Here we have neglected the unimportant angular dependence 
of g ( n )  in (5.2). This form of correlator is analogous to that characteristic of the displacive 
phase transitions in ferroelectics where a critical mode is coupled to the acoustic phonon 
Wl. 

It should be mentioned that A’ # 0 for F(vol), F(tetrag), and other couplings that 
do not obey the Sapriel conditions (3.3). This means that in those cases Sk (5.3) is non- 
singular everywhere in k-space. In the F ( x x - y y )  and F ( x y )  cases A’ = 0 and we can 
deduce immediately that Sk is singular only in four special directions in the basal plane 
given for the F ( x y )  case by 8 = fr and ‘p = 0, n / 2 .  r and 3rj2.  All these directions 
contribute equally to the fluctuation correction to the specific heat (5.1). Now the integral 
(5.1) can be easily estimated near the critical point, with the following results. 

(i) Ferroelastic systems having no domain boundaries satisfying the compatibility 
relations (3.3) such as F(vo1) and F(tetrag) so that A’ # 0 AC,, is convergent as a 
smooth function of temperature, so Landau theory is self-consistent, i.e. correct. 

(ii) Ferroelastic systems such as F(xx-yy )  having a set of domain boundaries satisfying 
the compatibility relations (3.3), but with the boundary having a non-zero energy and Jk 
a curvature along the crest of the ridge: ACp is convergent and Landau theory is again 
correct. We have the weak singularity 

(iii) Ferroelastic systems such as F ( x y )  with domain boundaries satisfying the 
compatibility relations (3.3) and costing zero energy as in figure 4, so the ridge of Jk 
has constant height: AC, diverges with 

and Landau theory fails near Tc. It should be noted that short-range forces, which are 
always present in the system, will give Jk on the ridge some curvature and hence suppress 
the divergence of ( 5 . 3 ,  giving the more usual behaviour of (5.4). 

(iv) Antiferroelastic coupling with order parameter Q k  at a point ko on the Brillouin 
zone boundary: AC, diverges with 
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and there are the same types of correction to Landau theory as for the nearest-neighbour 
Ising model. Landau theory fails within the Ginzburg interval around T,. 

We conclude that the general formulation of Landau theory for the phase transition 
is valid for almost all ferroelastic cases. The reason is very general: the involvement of 
elastic forces makes the effective interaction infinitely ranged, which suppresses critical 
fluctuations [18,19]. The mechanism does not operate for antiferroelastic transitions. We 
are not concerned here, therefore with the calculation of critical exponents. The related 
case of dipolar ferroelectrics was studied in great detail by renormalization group analysis 
in [20,21], and critical fluctuations were shown to grow strong enough to destroy the Landau 
theory very close to T,. 

Another class of models, also different from what we have discussed here, is posed by the 
Ising-like models on a compressible lattice (see [22-261 and references therein) where strain 
is coupled to the square of an order parameter (quadratic striction). The critical fluctuations 
always build up to the point where they drive phase transition to be discontinuous (weak 
first order). Anisotropy may play a role once again in decreasing the discontinuity to well 
below observable level [23,26]. 

The correlation function in real space is a very important characteristic of a transition 
and it is defined as a Fourier transform of the structure factor Sk: (5.2): 

C ( R )  = -(Qk:Q-k:) exp(ik. R). J ( C 3  
(5.7) 

At large R the asymptotic behaviour of G ( R )  is defined by the long-wavelength limit 
of Sk: (5.2). Let us discuss a typical F(xx-yy) case. As follows from (2.5) and (2.6), 
the denominator in (5.2) vanishes only along special ‘soft’ directions in k-space. This 
immediately results in a ‘dipolar’ asymptotic behaviour 

G(R)  1 / ~ 3  (5.8) 

along ‘soft’ directions at T = T .  At the same time S ( R )  decays exponentially for all 
other directions even at the critical temperature. The reason for this lies in a less singular 
behaviour of the denominator in (5.2) in comparison with the situation in systems with 
finite-range coupling. In (5.2) the function d ( n )  = 0 only in a few special directions in 
k-space whereas d ( n )  = 0 in systems with finite-range coupling, and the integral (5.7) is 
determined mainly by areas close to these directions. This immediately leads to a R-3 law 
instead of the usual R-’ [ l l ]  decay of correlations in real space. 
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